BASIC STEPS TO START WORKING WITH A RAILS
APPLICATION AND DB2

Create a Rails application called ‘Hello’: rails hello

Enter the ‘hello’ folder that was just generated: cd hello

From the DB2 Control Center (db2cc . exe) create the database blog dev. If
you prefer you can do this through the DB2 command line (db2cmd; db2
create database blog dev)

Edit config\database. yml with the proper credentials and a schema of
your choice (don’t use tabs, and leave a space between the parameters and their
values):

development:
adapter: ibm db2
database: blog dev
username: db2admin
password: dbZ2password
schema: blog

Generate a model for Post: ruby script\generate model Post
Generate a model for Comment: ruby script\generate model
Comment

Edit do\migrate\001 create posts.rb, in order to indicate the
structure for the Posts table:

class CreatePosts < ActiveRecord::Migration
def self.up
create table :posts do |t]

t.column "title", :string, :null => false
t.column "body", :text, :null => false
t.column "author", :string, :limit => 50, :null => false
t.column "email", :string
t.column "created at", :datetime, :null => false
t.column "updated at", :datetime, :null => false
end
end

def self.down
drop table :posts
end
end

Edit db\migrate\002 create comments.rb in order to specify the
structure for the Comments table:

class CreateComments < ActiveRecord::Migration
def self.up
create table :comments do |t]|
t.column "title", :string, :null => false

.column
.column
.column
.column
.column
nd

O t t F o ot

end

"body", :text, :null => false

"author", :string, :limit => 50, :null => false
"created at", :datetime, :null => false
"updated at", :datetime, :null => false

"post id", :integer, :null => false

def self.down
drop_table :comments

end
end

9. Migrate the database with: rake db:migrate. This will create the above
tables and an additional schema info table within blog dev. schema_info is

used to store the current migration version.

10. Generate scaffold for the Posts table with:
ruby script\generate scaffold Post

11. Run the WEBFrick server with: ruby script\server and point your browser
to http://localhost:3000/posts/

12. At this point, you should be able to see a basic front-end for your post table (in the
picture we already clicked on ‘New post”)

S[=E
| &

»

7} Posts: new - Microsoft Internet Explorer

Ele Edit Wiew Favorites Tools Help

Q= - Q- ¥ 2] G

Address [http: flocalhost:3000/posts new

New post

Title

Body

@ ¢ i
7 Search ‘_,/\.(Favunhes

j Go |L|nks »
-

Author

Email

Created at

2006 ~ IOcmber ~| |18 > 7|11 < :|25'

Updated at

2006 = IOcmber x| |18 > 7|11 < :|25v
-]
[@oee [[[[| SJocalinmanet 4

http://localhost:3000/posts/

13. You may want the created at and updated_at fields to be handled automatically
by Rails, without having to select the proper date and time. To do this, edit the
partial app\views\posts\ form.rhtml and remove:

<p><label for="post created at">Created at</label>

<%= datetime select 'post', 'created at' $></p>

<p><label for="post updated at">Updated at</label>

<%= datetime select 'post', 'updated at' $></p>

14. In order to specify the relationship between the Post and Comment models, you
can edit app\models\post.rb and insert has many :comments within the class.
For Comment, insert belongs to :post within app\models\comment. rb.

15. At this point you can customize the application as you wish. Feel free to
experiment (€.g. use ruby script\console) and remember that the relationships
we specified in step 14 will now enable you to directly access the post for a given
comment or the comments for a given post (e.g. (@comment.post and
@post.comments, where @post and (@comment are two instances of Post and
Comment respectively)

Enjoy!

Need help? http://www.alphaworks.ibm.com/tech/db2onrails/forum

